
Evolution of a multimodal map induced by an equivariant vector field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 5359

(http://iopscience.iop.org/0305-4470/29/17/012)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 5359–5373. Printed in the UK

Evolution of a multimodal map induced by an equivariant
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LESP, URA CNRS 230, INSA de Rouen, BP 08, Place Emile Blondel, 76131 Mont Saint-Aignan
Cedex, France

Received 19 April 1996

Abstract. It has been shown that the topological characterization of an equivariant system
should preferably be achieved by working in a fundamental domain generated by the symmetry
properties appearing in the phase space. In this paper, we discuss the case when the equivariance
of the studied system is taken into account to study the evolution of the population of periodic
orbits when a control parameter is varied. The Burke–Shaw system is considered here as an
example. It is shown that the equivariance of this system may be used to reduce the multimodal
first-return map in a Poincaré section to a unimodal map. A relationship between four-symbol
sequences and two-symbol sequences is given. The non-trivial evolution of the orbit spectrum
of a multimodal map is then predicted from the much simpler unimodal map to which the
multimodal map reduces.

1. Introduction

It is now well known that the set of unstable periodic orbits in a chaotic attractor may be
viewed as its skeleton [1]. In recent years, many papers have been devoted to the knowledge
of the population of periodic orbits embedded within attractors. In particular, it arises that
the population of periodic orbits may be encoded by using symbolic dynamics induced by
the generating partition defined by the critical points of a unidimensional first-return map.
Then, the population of periodic orbits may be extracted and encoded for fixed values of
the control parameters.

In the present paper, the Burke–Shaw system [2] is investigated on a control parameter
line. By working in the complete phase space, i.e. without taking into account the
equivariance of the system, the Poincaré map is found to be constituted by up to four
branches. The description of the evolution of the orbit spectrum when a control parameter
is varied is then rather complicated. Conversely, when the equivariance of the vector field is
taken into account in the characterization of the attractor, i.e. when the analysis is achieved
in a fundamental domain of the phase space [3–5], the evolution of the orbit spectrum is
found to be governed by the unimodal order and, consequently, can be completely predicted.
A relationship between the symbolic dynamics defined on the whole space and the symbolic
dynamics defined in a fundamental domain is given, allowing the prediction of the evolution
of the 4-symbol dynamics from the unimodal order.

The paper is organized as follows. Section 2 briefly describes the topological properties
of the Burke–Shaw system in the whole phase space and the evolution of the orbit spectrum.
In section 3, a study of the evolution of the orbit spectrum is achieved by taking into
account the equivariance property of the vector field. It is explained how the description
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of the evolution of the Burke–Shaw system may be achieved by using the unimodal order.
Section 4 is a conclusion.

2. Analysis in the whole phase space

2.1. The Burke–Shaw system

The Burke–Shaw system has been derived by Burke and Shaw from the Lorenz equations
[2]. They proposed a set of equations reading as

ẋ = −S(x + y)

ẏ = −y − Sxz

ż = Sxy + V

(1)

whereS andV are the control parameters. The Burke–Shaw system (1) is equivariant under
the Z2 symmetryγ : (x, y, z) → (−x, −y, z):

f(λ, γx(t)) = γf(λ, x(t)) (2)

in which x(t) is a real-valued vector,t is the time,λ is the parameter vector andγ is
a matrix defining the equivariance. The Burke–Shaw system (1) with parameter vector
λ = (S, V ) and variablesx = (x, y, z) is equivariant with the equivariant matrix reading as

γ =
( −1 0 0

0 −1 0
0 0 1

)
(3)

defining an axial symmetry of±π .
This equivariance is aZ2-symmetry, i.e.γ 2 = I. In other words, the Burke–Shaw

system remains globally unchanged if we apply theγ -matrix as follows:

(x, y, z)
γ→(−x, −y, z). (4)

In this paper,S is taken to be equal to 10 andV is the variable control parameter
ranging on [3.0, 4.272]. The system possesses two fixed pointsF± given by

x± = ±
√

V

S

y± = ∓
√

V

S

z± = 1

S
.

(5)

For V = 4.272, the asymptotic motion settles down onto a strange chaotic attractor
displayed in figure 1: this statement is based on computer experiment.

2.2. Topological characterization

The topological approach is based on the organization of periodic orbits whose linking
properties severely constrain the topology of strange attractors. In particular, in three-
dimensional spaces, periodic orbits may be viewed as knots [6]. A quantitative topological
characterization of low-dimensional chaotic sets requires the assignment of a good symbolic
encoding of trajectories which is given by a first-return map built on the Poincaré section
P defined as follows

P ≡ {(x, y) ∈ R2|z = z±, x > 0, ż < 0}. (6)
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Figure 1. Chaotic attractor generated by the Burke–Shaw system for(S, V ) = (10, 4.272).

Figure 2. First-return map to the Poincaré sectionP for V = 4.272. The absence of any
layered structure in this one-dimensional map is a signature of the high dissipative properties of
the dynamical system and is a justification of the use of the reduced map.

The Poincaŕe plane then contains the fixed pointF+. The vector field defined by
equations (1) is strongly dissipative and, consequently, the two-dimensional map is reduced
to a one-dimensional map. From this Poincaré sectionP , a first-return map is then computed
and displayed in figure 2. Four branches are exhibited. Let us label them on the set
§4 = {1, 0, 1, 2}. This labelling is chosen to exhibit the symmetry properties inherent to the
Burke–Shaw system in terms of symbolic sequences (see section 2.4). Periodic orbits will
be encoded according to this generating partition.

A mask of the attractor, which may be viewed as the knot-holder of the Burke–Shaw
attractor (i.e. as a manifold with a boundary in which knots are embedded), is built after
many visual investigations in the tridimensional state space, as displayed in figure 3. This
mask is related to a stretched and folded band on which asymptotic trajectories evolve in the
state space. Such an approach may be used whenever the vector field is strongly dissipative
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Figure 3. Mask of the Burke–Shaw attractor forV = 4.272.

and tridimensional and was first introduced by Birman and Williams on the Lorenz system
[7]. From the mask, we are able to define four strips, each one being associated with a
branch of the first-return map. An increasing branch is associated with a strip undergoing
an even number ofπ -twists while a decreasing branch corresponds to a strip undergoing an
odd number ofπ -twists.

Once the mask is extracted (figure 3), the topology is synthetized in a template as
explained in [8]. A template may be described by a linking matrixMij in which Mij is
the local torsion (the number of orientedπ -twists) of theith strip if i = j , and the sum of
the oriented crossings between theith and thej th strips if i 6= j . In our case, the template
presents four strips (figure 4) and, consequently, the linking matrix is a 4× 4 matrix. The
local torsions in the template are in agreement with the branches of the first-return map,
i.e. strips1 and 1 which are associated with the decreasing branches possess an odd local
torsion and strips 0 and 2 which are associated with the increasing branches possess an even
local torsion. The linking matrix of the Burke–Shaw template reads as

Mij =


+3 +2 +2 +3
+2 +2 +2 +3
+2 +2 +3 +3
+3 +3 +3 +4

 . (7)

This template has been checked by evaluating a few linking numbers on plane
projections of orbit couples. All linking numbers evaluated from plane projections have
been found to be equal to the ones predicted by the template. Details concerning such
a topological characterization procedure may be found in [6] or in [8]. This topological
characterization is based on linking numbers which are invariant under isotopy of knots,
i.e. a continuous deformation of knots without any cutting. Linking numbers between two
periodic orbits are therefore preserved under a control parameter change as long as the orbits
remain embedded within the attractor.

2.3. Multimodal maps and order relations

In the last few decades, several works have been devoted to the study of a unimodal map
under the variation of a control parameter. From pioneering papers by Metropoliset al [9],
Collet and Eckmann [10] or Hao Bai Lin [11] to the recent paper by Hall [12], a symbolic
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Figure 4. Template of the Burke–Shaw attractor forV = 4.272.

dynamics and a unimodal order are introduced to describe the creation of periodic orbits.
Let us recall some basic statements. In the case of a strongly dissipative unimodal map

Fµ, one critical pointC separates an increasing branch and a decreasing branch, labelled 0
and 1, respectively. Then each pointxn of the invariant set of the map possesses a code
K(xn) = σn defined by

σn =
{

0 if xn < C

1 if xn > C.
(8)

Consequently, a trajectory starting fromx1 with K(x1) = σ1 may be encoded by a
symbolic sequence constituted by the string of the successive codes on§2 = {0, 1} reading
as

S = σ1σ2 . . . σi . . .

In a period-p orbit, a sub-stringS̄ of S is infinitely repeated. Clearly, the sub-stringS̄

containsp codes and reads as

S̄ = σ1σ2 . . . σp

with σ1 = σp+1.
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A periodic orbit may then be encoded by a symbolic sequence(W) which is given by
a sub-stringS̄. To the ith periodic point of such a periodic orbit encoded by(W) may be
associated a symbolic sequenceWi reading as

Wi = σiσi+1 . . . σpσ1 . . . σi−1

whereWi is the cyclic permutation of(W) whoseσi is the code of theith point.
All periodic points may be ordered by the unimodal order≺1 [10, 12] which is defined

as follows.
Let us consider two symbolic sequences

W1 = σ1σ2 . . . σkσk+1 . . .

and

W2 = τ1τ2 . . . τkτk+1 . . .

whereσi ’s and τj ’s designate codes on§2. Supposeσi = τi for all i < k and σk 6= τk.
Let W ∗ = σ1 . . . σk−1 = τ1 . . . τk−1 be the common part betweenW1 andW2. Setting that a
string σ1σ2 . . . σk−1 is even (odd) if the sum

∑k−1
i=1 σi is even (odd), then we have

W1 ≺1 W2 if W ∗ is even andσk < τk

W1 ≺1 W2 if W ∗ is odd andτk < σk

W2 ≺1 W1 if W ∗ is odd andσk < τk

W2 ≺1 W1 if W ∗ is even andτk < σk.

If W1 andW2 do not start with any common part, thenW ∗ is assumed to be even. When
W2 ≺1 W1, we say thatW1 implies W2.

When a period-p orbit of a mapFµ is created forµ = µ∗, the p periodic pointsxi

satisfy

xi = F i
µ∗ (xC) for i ∈ [1, p] (9)

in which xC is the coordinate of the periodic point appearing at the tangent bifurcation
creating the periodic orbit (closest to the critical pointC). Clearly,xp = xC . The symbolic
sequence

(W) = σ1 . . . σp

where σi ’s are the codes of thep periodic pointsxi (the code of the critical pointC
may be taken equal to either 0 or 1) is here called theorbital sequence. When an orbital
sequence(W1) implies an orbital sequence(W2), we say that(W1) forces(W2) and we note
(W2) ≺2 (W1) where≺2 is the forcing order. Let us note here that the forcing order is
therefore defined by using the same rules as for the unimodal order. However, for the sake
of clarity, it is convenient to introduce two different notations for implying and for forcing.

For a unidimensional unimodal map, the orbital sequence(W) is always the cyclic
permutationWi which implies the(p − 1) others. Moreover, atµ = µ∗, the orbital
sequence(W) of the newly born orbit forces all the orbital sequences of periodic orbits
which are present within the invariant set. The orbital sequence(W) is also called the
kneading sequencefor µ = µ∗ and is denoted(W).

These concepts may be extended to multimodal maps [13, 11]. In the case of the
multimodal map induced by the Burke–Shaw system, three critical points are present. Orbits
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are therefore encoded on§4 according to

σn =


1 if xn < xC1

0 if xC1
< xn < xC1

1 if xC1 < xn < xC2

2 if xC2 < xn

(10)

whereCi (i = 1, 1, 2) denote the critical points.
We may then possibly define a multimodal implying order and a multimodal forcing

order by using the same rule as previously given for the unimodal order but with the codes
now taken on§4. Unfortunately, such orders are not so useful as the unimodal order since,
in the general case, the sequence of bifurcations of a multimodal map is different from the
one of an ideal family of multimodal maps, i.e. satisfying the aforementioned multimodal
orders. Thus, the admissibility conditions for a symbolic sequenceW must be defined in a
more general way.

A periodic orbit encoded by the sequenceW of p symbols taken on§4 will be admissible
if each one of itsp cyclic permutations

Wi = σiσi+1 . . . σpσ1 . . . σi−1

satisfies the conditions depending on the codeσi−1:
K1 <1 Wi if σi−1 = 1 or σi−1 = 0

Wi <1 K1 if σi−1 = 0 or σi−1 = 1

K2 <1 Wi if σi−1 = 1 or σi−1 = 2

whereK1, K1 andK2 are the kneading sequences associated with the critical pointsC1, C1

andC2, respectively. The orbit spectrum of an attractor is then constituted by the set of all
admissible periodic orbits. When the control parameters are varied, the kneading sequences
associated with each critical point change and, consequently, the orbit spectrum evolves.

2.4. Evolution of the orbit spectrum

For V = 3.0, there exist two limit cycles on which the asymptotic motion settles down
depending on the initial conditions. These two limit cycles are displayed in figure 5. They
are labelledA1 andA1, respectively.

When the control parameterV is increased, these two limit cycles lose their stability
through period-doubling bifurcations. Two simultaneous cascades of period-doublings then
arise which, in terms of symbolic dynamics, are described as follows:

1 1 V = 2.831
10 10 V = 3.448

1011 1011 V = 3.589
1011 1010 1011 1010 V = 3.621

1011 1010 1011 1011 1011 1010 1011 1011 V = 3.628.

The accumulation point is reached forV ≈ 3.629. Beyond this value, the asymptotic
behaviour settles down onto one of the two chaotic attractorsA1 andA1 depending on the
initial conditions. The first-return map of these attractors is displayed entirely in figure 6.

Periodic orbits of each attractor are encoded according to the partition induced by the
critical point of the associated first-return map. Thus, periodic orbits of attractorA1 are
encoded on the set§∗

2 = {1, 0} and orbits ofA1 on §2 = {0, 1}. Because the route to chaos is
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Figure 5. Coexistence of two limit cycles.

Figure 6. First-return maps of the two co-existing attractors, corresponding toA1 on the left
and toA1 on the right.

the period-doubling cascade, the creation of periodic orbits under the increase of the control
parameterV is governed by the unimodal forcing order [10, 12, 14]. ForV = 3.8115,
however, a boundary crisis arises and the two attractors collide to form a single larger
attractor. This scenario has been described by Gregobiet al [15]. At this V -value, the
first-return map (figure 7) is then constituted by three monotonic branches labelled1, 0 and
1.

As could be expected from the simultaneity of the period-doubling cascades associated
with the two attractors, the first-return map is symmetric, in terms of allowed symbolic
sequences, with respect to the period-1 orbit encoded by (0). Indeed, the attractorA1 is
symmetrical toA1 under the action of theγ -matrix. The map is symmetric up to the
boundary crisis which appears forV = 3.8115. Both attractors then become a single
symmetric attractor. Beyond thisV -value, the symmetry is broken and the evolution of the
orbit spectrum cannot be compared to the evolution of a symmetric map.
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Figure 7. The three-branched map forV = 3.8115.

With many numerical computations, the order of creation of periodic orbits is studied
and reported in table 1 forV ∈ [3, 4.272]. We then observe that, just beyond the boundary
crisis, the first two orbits to be created may be written as

C1
(100

110
1
)C1.

They are easily found in the table since they are the first orbits to be encoded with
three different symbols. A pitchfork bifurcation is hereafter observed. It destabilizes the
orbit encoded byC1

(10111)C1. Two limit cycles then coexist, encoded by(10110)C1
and

(11100)C1. These two limit cycles then generate two simultaneous period-doubling cascades.

3. Analysis in the fundamental domain

3.1. Topological characterization

Above, we have developed a topological analysis of the Burke–Shaw system in the whole
state space as is common practice. From such an analysis in the whole state space, the
Burke–Shaw system could be described in terms of a multimodal map. The evolution
of the orbit spectrum could then be studied by using a symbolic dynamics requiring four
symbols. Moreover, as the first-return map is symmetric in terms of symbolic sequences,
such a study would be achieved in a similar way as the one introduced by Fang [16] for the
study of antisymmetrical maps. When this program is fulfilled, it is observed that the order
of creation of periodic orbits is rather intricate, and cannot be easily predicted. Conversely,
in this subsection, we show that a very easy prediction can be achieved if we take into
account the equivariance properties of the Burke–Shaw system.

In previous papers [4, 5], we have shown that, in the presence of equivariant properties, a
system is preferably analysed in a fundamental domain defined with respect to the symmetry
properties of the phase portrait, i.e. such a fundamental domain may be used to tesselate
the whole attractor. The specific procedure required to characterize equivariant systems is
completely reported in [4] with the Lorenz system taken as an example (see also [5] for the
more general case of covers of the proto-Lorenz system). In this case, a wing of the Lorenz
attractor may roughly be viewed as the fundamental domainD. The whole attractor is then
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Table 1. Order of creation of orbits with period smaller than 6, extracted from the Burke–Shaw
system forV ∈ [3, 4.272].

(W)c2 (W)c1 Cj
(W)Ci

(W)c1 (W)c2 (W)c1 Cj
(W)Ci

(W)c1

0
1

0
1 12111

0 21201
0

10 10 12111
2 2121

0
1

1011 1011 12102
1 2111

1
0

1011
1
0 10111

0 12100
1

21100
1

101
0 101

0 121
0
1 2110

1

1001
0
1 10010

1 1211
1
0 21111

0

1001
0 1001

0 1211
1
2 21120

1

10001
0 10001

0 121
0 211

0

C1
(100

110
1
)C1 1201

2
1 21021

0

10110 11100 1201
0
1 21010

1

10100
1

11000
1 1201

0 2101
0

1010
1

1100
1 12001

0 21001
0

1011
1
0 11011

0 12001
2 2101

0
1

C1(1
0
1

1
2)C2 12012

1 2111
1
0

111 210 12010
1

21100
1

1111
0
1 21010

1 1201
2 211

0
1

1111
0 2101

0 12021
0 21111

0

11101
0 21001

0 C1(120
121

2)C2

11101
2 2101

0
1 12121 22120

11112
1 2111

1
0 12120

1
22110

1

11110
1

21100
1 1212

1 221
1
0

1111
2 211

0
1 12111

0 22101
0

C1
(111

021
0)C1 12111

2 2211
0
1

11021 20111 12102
1 2201

1
0

1102
1 201

1
0 12100

1
22000

1

11011
0 20101

0 1210
1

2200
1

11011
2 2011

0
1 1211

1
0 22011

0

11002
1 2001

1
0 1211

1
2 22020

1
11000

1
20000

1 121
2 220

1

1100
1

2000
1 1221

2
1 22121

0

1101
1
0 20011

0 1221
0
1 22110

1

110
1

200
1 1221

0 2211
0

1111
0
1 20110

1 12201
0 22101

0

111
1
0 2011

0 12201
2 2211

0
1

11101
0 20101

0 12212
1 2221

1
0

11101
2 2011

0
1 12210

1
22200

1

11112
1 2021

1
0 1221

2 2220
1

11110
1

20200
1 12221

0 22211
0

1
1
2 20

1 12221
2 22220

1
1211 2120

tiled by the fundamental domainD (say the right wing) and one of its copy (say the left
wing).
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In the presence of equivariance properties, it has then been demonstrated that the relevant
topology is the topology of the fundamental domain rather than the topology of the whole
attractor [5]. Consequently, the dynamics is characterized by a fundamental template whose
extraction is now given.

Figure 8. The mask of the fundamental domainD is built by isolatingD from the original mask
and gluing the outcoming strip with the incoming strip. (a) Mask of the Burke–Shaw attractor;
(b) mask of the fundamental domainD.

Starting from the original mask displayed in figure 8(a), a mask of the fundamental
domain is built (figure 8(b)). The fundamental domain is easily isolated since the axis of
symmetry is thez-axis. Thus, on anxz-plane projection of the attractor (or on the mask
displayed in figure 8(a)), the fundamental domainD is separated from its copyγD by the
line x = 0. From the fundamental mask displayed in figure 8(b), two strips are exhibited.
The first strip, labelled 0, undergoes two successive positiveπ -twists while the second strip,
labelled 1, presents a single positiveπ -twist. The fundamental template is then found to be
defined by the linking matrix

MD =
( +2 +1

+1 +1

)
. (11)

The fundamental template is displayed in figure 9. The existence and properties of the two
strips are confirmed by a first-return map to a Poincaré setP defined as the union of the
Poincaŕe sections

PD = {(x, y) ∈ R2|z = z±, ż < 0, x > x+} (12)

and

PγD = {(x, y) ∈ R2|z = z±, ż > 0, x < x−} (13)

in which the identification betweenD and γD (figure 8(a)) defines an invariant variable
|x|. Indeed, the first-return map computed with the invariant variable|x| exhibits two
monotonic branches (figure 10). The increasing branch is associated with strip 0 which
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0 1

Figure 9. Fundamental template of the Burke–Shaw attractor for
V = 4.272.

Figure 10. First-return map to the Poincaré setP built with the invariant variable|x|.

presents an even number ofπ -twists, while the decreasing branch corresponds to strip 1
which undergoes oneπ -twist. Consequently, periodic orbits are now encoded on the set
§D

2 = {0, 1}. Moreover, the first-return map presents a logistic map structure which causes
the period-doubling cascade to be the route to chaos. Such a result is of crucial relevance
since the evolution of the population of periodic orbits must therefore be exactly predicted
by the unimodal order.
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P PD D

(a) (b)

Figure 11. Evolution of the period of an orbit under the action of8 which projects the dynamics
on the fundamental domain. (a) Orbit encoded by (1) on the whole attractor; (b) the same orbit
projected on the fundamental domainD. It is now encoded by (10).

3.2. Description of the evolution of orbit spectrum

We have now to establish a relationship between the symbolic dynamics defined on the
whole attractor and the symbolic dynamics defined on the fundamental domainD. To this
purpose, we first remark that the projection of the dynamics on the fundamental domain
induces a multiplication by two of the period of each orbit [5]. For instance, let us consider
the orbit encoded by (1) on the whole attractor (figure 11(a)). When this orbit is projected
on the fundamental domainD, it presents two intersections with the Poincaré setP and is
therefore of period-2 (figure 11(b)). It is then concluded that a symbol from the set§D

2 is
mapped to a block of two symbols of the set§4. After many investigations, we found that
such a map8 can be taken as

8(1) = 10

8(0) = 11

8(1) = 01

8(2) = 00

(14)

where one may see that8 maps symbols in blocks of the same parity. For instance, the
orbit encoded by(111) on the set§4 will be encoded by8̃(111) = (100101) on the set§D

2 .
Let us now remark that the equivariance of the Burke–Shaw system implies that there

exist two kinds of periodic orbits: (i) symmetric orbits which are globally invariant under
the action of theγ -matrix and (ii) asymmetric orbits which appear by pairs with one orbit of
the pair mapped to the other under the action of theγ -matrix. In contrast with asymmetric
orbits, symmetric orbits may be written as

(W ∗σpW
∗
σp)

whereW ∗ is a substring of symbols taken on the set§2 and W
∗

is the conjugate ofW ∗,
i.e. corresponding to the interchange between 1 and1. For asymmetric orbits, it is found
that the symbolic sequences in§4 of a pair of orbits are mapped to the same sequence in
§D

2 . For instance, from table 1, we find that the orbit(111) is paired with the orbit(210)
which are both mapped to (100101). Therefore, as expected, projecting the dynamics on
the fundamental domainD mods out the symmetry properties.
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Table 2. Prediction of the evolution of the orbit spectrum of the Burke–Shaw system on the
range [3.0, 4.272] from the unimodal order. The order of creation may be favourably compared
with the one given in table 1 where orbits are paired when required. Certain orbits are not present
in this table since they are obtained from higher periodic orbits. Let us note the exception that
orbit 1 is not mapped to an orbit whose period is doubled due to the fact that 1 identifies with
(11) which is mapped to 0 by relation (15).

(W)
SD

2
8̃−1(W) (W)

SD
2

8̃−1(W)

1 0 10011 11020
10 1 1 100111 110 200
1011 10 10 100110 111 201
101110 101 101 1001 11 20
101111 100 100 1000 12 21
10111 10010 100010 121 211
10110 10111 100011 120 210
101 101 10001 12021
100 112 10000 12122
100101 111 210 100001 121 220
10010 11121 100000 122 221

The inverse map8−1 is defined as
8−1(10) = 1

8−1(11) = 0

8−1(01) = 1

8−1(00) = 2

(15)

which leads to a unique result, modulo a Bernoulli shift.
For instance, if 8−1 is applied to the sequence (100101) on§D

2 , we obtain
8−1(100101) = (111). But we also have to predict the paired orbit. This is achieved
by applying a one-step Bernoulli shift to the original sequence on§D

2 . Such a Bernoulli
mapping corresponds to a switching from the Poincaré sectionPD to the Poincaŕe section
PγD. We then obtain8−1(001011) = (210) which is indeed the orbit symmetrical to(111).

The evolution of the orbit spectrum of the Burke–Shaw system can now easily be
predicted from the unimodal order (see table 2). We have here a demonstration of the
importance of symmetry properties in a system and, in particular, of the simplification of
the understanding of a system when the equivariance is taken into account in the topological
analysis.

4. Conclusion

By using the symmetry properties inherent to the Burke–Shaw system, we demonstrated that
its four-branch map may be reduced to a unimodal map whose structure is similar to the well
known logistic map. Consequently, the rather complicated evolution of the population of
periodic orbits encoded with four symbols is directly predicted from the unimodal order. We
then proved that moding out the symmetry by working in a fundamental domain defined
with respect to the equivariance order allows us to simplify the analysis of equivariant
dynamical systems.
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